Calculators, Mobile Phones, Pagers and all other mobile communication equipment are not allowed.

1. a) Find
$$\frac{dy}{dx}$$
 if $y = \left[\sin\left(x^2 + 10\right)\right]^2$.

(3 Points)

b) Let
$$x = \frac{x + xy + 2}{y^2}$$
. Find $\frac{dy}{dx}$ at $y = 1$.

(3 Points)

2. a) Let
$$y = \frac{1}{r^2} - 2r$$
, and $r = 1 + \tan\left(\frac{2\pi}{t-1}\right)$. Find $\frac{dy}{dt}$ at $t = 3$.

(3 Points)

b) Let
$$y = \frac{\sqrt{x}}{x-2}$$
. Approximate the change in y, if x changes from 4 to 3.9.

(3 Points)

3. Find two real numbers x and y of minimum product such that $x + y^2 = 12$.

(3 Points)

- 4. a) State The Mean Value Theorem.
 - b) Use The Mean Value Theorem to show that if 0 < a < b, then

$$\sqrt{b} - \sqrt{a} < \frac{b-a}{2\sqrt{a}}.$$

(4 Points)

5. Let
$$f(x) = \frac{x^2}{x^2 - 1}$$
, $f'(x) = \frac{-2x}{(x^2 - 1)^2}$ and $f''(x) = \frac{6x^2 + 2}{(x^2 - 1)^3}$.

- a) Find the vertical and horizontal asymptotes (if any).
- b) Find the intervals on which f is increasing and the intervals on which f is decreasing. Find the local extrema (if any).
- c) Find the intervals on which the graph of f is concave upward and the intervals on which the graph of f is concave downward. Find the point of inflection (if any).
- d) Discuss the symmetries of the graph of f.
- e) Sketch the graph of f.

(6 Points)